Vibrational Sum-Frequency Scattering for Detailed Studies of Collagen Fibers in Aqueous Environments

نویسندگان

  • Patrik K. Johansson
  • Patrick Koelsch
چکیده

Protein fibers play a crucial role in many disease related phenomena and biological systems. A structural analysis of fibrous proteins often requires labeling approaches or disruptive sample preparation while it lacks chemical specificity. Here we demonstrate that the technique of vibrational sum-frequency scattering (SFS) provides a label-free pathway for the chemical and structural analysis of protein fibers in solution. By examining collagen, the most abundant protein in mammals, we demonstrate that the SFS signal of fibers can be detected in the NH, CH stretching and bending, and amide I regions. SFS spectra were found to depend on the scattering angle, which implies the possibility to selectively probe various features of the fibers. The fitting of the data and maximum entropy method analysis revealed a different phase for side-chains and carbonyl contributions, which helps to identify these otherwise overlapping spectral peaks and provides the possibility to perform orientational analysis. Our findings suggest that SFS allows for the greater understanding of protein fibers in solution, which is important when, for example, designing scaffolds in tissue engineering or developing cures for diseases associated with protein fibers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid vibrational imaging with sum frequency generation microscopy.

We demonstrate rapid vibrational imaging based on sum frequency generation (SFG) microscopy with a collinear excitation geometry. Using the tunable picosecond pulses from a high-repetition-rate optical parametric oscillator, vibrationally selective imaging of collagen fibers is achieved with submicrometer lateral resolution. We furthermore show simultaneous SFG and second harmonic generation im...

متن کامل

Polarization-sensitive sum-frequency generation microscopy of collagen fibers.

Point-scanning sum-frequency generation (SFG) microscopy enables the generation of images of collagen I fibers in tissues by tuning into specific vibrational resonances of the polypeptide. It is shown that when collagen-rich tissues are visualized near the 2954 cm(-1) stretching vibration of methylene groups, the SFG image contrast is higher compared to the contrast seen in nonresonant second-h...

متن کامل

Vibrational Spectroscopy of Aqueous Sodium Halide Solutions and Air-Liquid Interfaces: Observation of Increased Interfacial Depth

Air-aqueous sodium halide solution interfaces are examined using vibrational sum frequency generation spectroscopy. Raman and ATR-FTIR (attenuated total reflection Fourier transform infrared) spectroscopies are also used to compare the effects of halide anions on the water structure of the bulk solution to that of the interface. The interfacial water structures for the sodium fluoride and chlor...

متن کامل

Molecular characterization of water and surfactant AOT at nanoemulsion surfaces.

Nanoemulsions and microemulsions are environments where oil and water can be solubilized in one another to provide a unique platform for many different biological and industrial applications. Nanoemulsions, unlike microemulsions, have seen little work done to characterize molecular interactions at their surfaces. This study provides a detailed investigation of the near-surface molecular structu...

متن کامل

Investigations of the solid–aqueous interface with vibrational sum-frequency spectroscopy

Vibrational sum-frequency spectroscopy (VSFS) is increasingly being applied to understanding the molecular properties of the solid/ liquid interface. There are many opportunities in the future for understanding important issues in interfacial science. This review provides insight into recent applications and advances of VSFS to the solid/aqueous interface with particular focus on the behavior o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2014